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Abstract—We establish in this paper the foundations of a two-field turbulent flow model that includes
two turbulent fields. The case of dispersed particles in an incompressible carrier fluid is treated here, but
the very presence of these two fields allows for the generalization of the model to the instability-induced
turbulent mixing of two materials. This model describes both cases of turbulent mass diffusion and small
drag regime, “wave-like” interpenetration of the two components. It also includes the damping of the
turbulence due to the presence of the particles. In addition, a theoretical derivation of the drag-induced
decay of the large-scale turbulence kinetic energy is proposed as another mechanism specific to turbulent
multiphase flow.
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1. INTRODUCTION

Turbulence in two-phase flow has been a subject of interest for many years. However, only low
concentration suspensions are relatively well understood; in such a flow, the turbulence of the
mainstream is not affected by the dispersed phase. Those cases when the turbulence in the
surrounding fluid is affected are much more difficult.

Experimental work has shown that the presence of solid particles or liquid droplets modifies the
turbulence structure. On the theoretical side, very little is known. Turbulence models, as in
Elgobashi & Abou-Arab (1983) and Margolin (1977), predict the effect of particles on the
turbulence intensity. However, these earlier studies investigated the limiting case of a small volume
fraction for the dispersed phase. This simplified the model, requiring equations for the carrier fluid
only. The difficulty with any two-phase turbulent flow model resides in the interaction between the
dispersed particles and the carrier fluid (e.g. Daly & Harlow 1978). Two different approaches have
been used to describe the behavior of particle-laden turbulent flow. Using the dynamics of single
particles, some authors, such as Gouesbet et al. (1984), obtained turbulence intensity correlations,
and Margolin (1977) calculated the diffusion coefficient for particles in a turbulent flow. The other
approach is to use averaged field equations (see Nigmatulin 1979) to develop a turbulence model,
as in Elgobashi & Abou-Arab (1983).

We investigate here the case of a larger volume fraction and develop the foundations of a model
accounting for two different turbulent fields. This will allow for its generalization to the description
of such phenomenon as the instability-induced turbulent interpenetration of two materials (see
Besnard & Harlow 1987). Also described by this model is the drag-induced decay of large-scale
turbulence kinetic energy, and the limiting cases of turbulent mass diffusion, and a small-drag,
“wave-like’ interpenetration regime. The more classical features of return to isotropy, and damping
of the turbulence kinetic energy due to the presence of particles in the surrounding fluid are also
accounted for by the model.

We start here with two-phase fluid equations, and, as it is necessary to proceed in a stepwise
manner, we restrict ourselves to the case of rigid particles in an incompressible fluid. In these
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equations, the field variables have been defined by appropriate averaging (Nigmatulin 1979):

a+e=1, (1]
6((;],, + 6(,2]/‘,/,/UU :Tll;/}\: K(Ua, ) (]
a‘éfj” + 6‘2;/)2(]2/ ;2 g; K S (U= U, [5]

where ¢, and ¢, are the volume fractions of the particles and the incompressible fluid, respectively,
p, and p, are their microscopic densities, U,; and U, are their velocities and K is the coupling
function describing the interaction between the two fields. The pressure gradient dP/6 X is obtained
after a careful integration of the microscopic gradients in the control volume (see Nigmatulin 1979).
At a given point x, it represents the external forces that accelerate solid particles or fluid elements
located at x. In the case where the particle size is not small compared to the length scale of interest,
the above averaging is not possible, and pressure would have to be defined within and outside the
particles. Terms describing viscous effects have been omitted, due to the difficulty of defining the
viscosity of the dispersed phase, and there are no collision terms. In order for our model to
approach the usual single-phase turbulence transport equations, it is necessary to include the effect
of viscosity as ¢,—+0. Away from that limit, however, the effects of momentum exchange between
the fields predominate, and the viscous stresses are negligible. We are therefore restricted to a
certain range for ¢,. The lower limit, ¢, .;,, depends on the level of viscosity; the upper limit, ¢, .,,
occurs when the collision rate between particles becomes important.

It is assumed (see Daly & Harlow 1978) that K can be modeled as the product of ¢,¢, and a
function that depends only on the local properties of the two fields, e.g.

K = Cpt,6p,|U, — Ul = 4¢,C.

We have stressed that [1]-[5] are already averaged. This means that the size of the particles is
assumed to be much smaller than the size of the control volume over which the averaging has been
done. As a consequence, this also means that any length scale that we deal with in our derivation
is also assumed to be much larger than the size of the control volume. This suggests that only
large-scale turbulence (compared to the size of particles) can be described here.

The usual approach for describing turbulence transport in two-field flow is to separate each of
the variables of the system [1]-{5] into a mean part and a fluctuating part (see Lumley 1978) and
to follow the same procedure used in one-fluid turbulent transport by Daly & Harlow (1970). For
a single field, the results are transport equations for the Reynolds stress tensor R, and for the
energy-decay-rate tensor D

For two-field turbulent transport, we want to define entities for each of the fluids analogous to
the Reynolds stress tensor. More precisely, we want to derive a conservation equation for the total
mean momentum including the turbulent flux of momentum. One approach is to generalize for the
two-field case models that have been developed for a single fluid. This approach is especially
attractive when the first field is sparsely distributed in the background fluid, since the second fluid
then determines the behavior of the mixture. The procedure is to introduce a mean and fluctuating
part for the volume fraction and velocity of each field:

Ull = UI: + U;,,

6=0+¢, 6
Uzl = UZ: + Uén [ ]
=64+ ¢

The use of the space-averaged [1]-[5] introduces questions regarding the length scale for two-field
turbulence. Our question pertains to the relationship between particle size, interparticle distance
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and the spectrum of scales in that part of the flow that is considered to be turbulent. Within the
context of two-field flow, the mean variations of the field variables take place over distances that
are large compared to the particle size and the interparticle spacing. We assume this also to be true
for all relevant scales of turbulence, despite the recognition that turbulence scales comparable to
particle size and spacing inevitably exist whenever there is relative motion between the fields. Precise
resolution of the question raised by this discrepancy in our assumptions can only be settled with
much additional investigation. For now, we confine our considerations of scales to those parts of
the spectrum that are sufficiently large for the two-field equations to be valid.

This is made possible by the basic assumption that the length scale of the turbulence is much
greater than the length scale of the ensemble averaging volume, and much smaller than the
characteristic length of our problem, i.e. of the mean flow. This splitting into mean and fluctuating
parts can be applied to any variable of interest. There is, however, a major conceptual difficulty
with the choice of the volume fraction and velocity as the primary variables. Because the velocity
is not a transportable quantity, it is impossible to define a conservation equation for the mean total
momentum, p,é,U,, + p,&,U,. The alternative approach, is to choose m,, = ¢,U,; and m,, = ,U,, as
primary variables. This gives, for two-phase flow, the same type of model “B”, that Favre (1965)
described for a single compressible flow.

Having chosen m, and m, as the primary vanables, we still require a definition for the average
velocities of the two fields. Following Besnard & Harlow (1985) we define U,, and U,, as m,, = €,0,,
and sy, = ¢,U,,. In the limiting case of the one-field model, we recover the usual definition for the
unweighted average velocity. The objective of the present work is to develop a turbulence model
that accounts for the full dynamic behavior of the two fields and the interaction between them.

We derive our equations in section 2, and show that it is convement to introduce a hierarchy
of models, more and more complex, in order to describe whichever level of precision we need.
However, we will restrict ourselves to the lowest order model. We show the necessity for a length
scale for the turbulence, particularly in order to close the pressure—velocity correlations. We then
show that this turbulence length scale can be eliminated from the equations through the
introduction of an energy-decay-rate tensor, which is very similar to the tensor obtained in the
one-field case. The different closures are derived in section 3.

Experiments show that in many types of interpenetrating two-field flows, there is a steady
state for which one possible interpretation is to consider the ensemble average of the fluctuating
flow to be the mean-flow part, with the rest described as turbulence. In some circumstances,
Needham & Nerkin (1983) showed that the collisional pressure P,, coming from collisions between
particles, can stabilize both the linear and the non-linear perturbations to the flow. We show in
section 4 that the Reynolds tensor can play the same role as P, and exhibit the source term for
the turbulence equations corresponding to the instabilities of the mean flow developing into
turbulence.

In section 5, we present an analysis of this model, and demonstrate that it can adequately describe
the diffusive behavior of the volume fraction in the case of strong coupling, as described by Lumley
(1975, 1978), but also that it exhibits a ‘‘wave-like” limit that corresponds to a very weak coupling
between the two fields. We also show that the presence of the first fluid induces a strong effect on
the turbulence of the background second fluid through the coupling terms.

2. DERIVATION OF THE EQUATIONS

2.1. Turbulent energy equations
We rewrite the system [1]-[5] as follows:

6+e6=1, (71
d¢q, | Omy

ar - 0X, 0. (8]
O0e;,  Omy,
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i) 0 ; 0P C
il + (m“mlk> = —&_'*’”‘(Clmz.—‘zmn) (10]

o a_Xk € P OX;  p

and

= -2 4 Z(emy, —emy). 11
0. 3X, 02(2 1= €My (11]

Using the decompositions m,; = m,, + m;, and m,, = m,, + my, [7]-{9] become

6+6=1, [12]
9e,  omy
o axk‘o [13]
and
0&, Omy
—67+ X, =0. [14]

The momentum equations are not so straightforward. For the first field, we obtain

ém, @& (mymy\_ ¢ 0P OF, C
7 an< = To X X, +Pl (eymy; — €my,). (15]

€
In this equation F,, is the Reynolds stress tensor and its expression is

Fi= (mlimlk>_mli_mlk. [16]
€ €,

The fluctuating part C’ of the coupling coefficient C should be calculated as a function of the
fluxes and the volume fractions of the two fields. However, its precise expression depends on
whether we consider Stokes drag, or flow separation drag, or any other type of interaction between
the two fields. For the sake of simplicity, we neglect the fluctuating part of C.

Our next task is to derive a transport equation for the tensors F,;, and F;. Let us first define
¥, = l/¢,. Using [2]-[4], we obtain
¢

é
= (mnrn.,w.) = ~ax (ml:mljmlk'p%) + (’”n

C
b% +— (mlijI + mllm2/ - 2(:’"1,’"11'//0-
k

P
(7]

op . 0P
ax, VX,

-~
—~

Due to the definition of F,;, the only term where i, appears explicitly is in the gradient of
my,m,my ;. Notice that ¢, = Z,¢5. We then can derive a hierarchy of approximate equations,
based on this expansion. Also notice that ¢; = —¢3, and that |¢]| <€, and |e§| <§E (i.e. ¢; and ¢;
are bounded quantities). If A2 = max (&2, ¢}), we have §, = 1/¢, + O(h?). However, for moderate
volume fraction variance (i.e. ¢|* < &), the above decomposition of y, should be rearranged in the
form , = 1/¢, £, (¢,/¢,)", this formal series being convergent after the averaging procedure. Taking

an average of [17], we have
—_— ] EI n)2
mym My = mymmy, 6?2 7 )
1 n |

of which we keep the first term of the series, m,m;m,/€;. This is equivalent to discarding all
correlations €4 ... A, when compared to €4 - - - A4]. Although this lowest order approximation
seems rather limiting, it is enough to exhibit the main properties of this model, based on a careful
analysis of the coupling terms between the two fields.

However, we must emphasize that the fluctuations in m contain the fluctuations in ¢; thus, even
when only the lowest order in the expansion is retained, the theory is very different from what we
would have obtained if we had neglected volume fraction correlations altogether. Keeping higher
order correlations in ¢ is crucial for describing instability-induced turbulence [i.e. Rayleigh-Taylor,
in Besnard & Harlow (1987)].
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After averaging [17], we obtain the correlations T, =m{my and U, =xT,+ T;). In order to
adequately describe the interaction between the two fields, we need an equation for 7. Using the
fact that the correlation m],0m}/0X] is of first order with respect to ¢; (Besnard & Harlow 1985)
this equation for T, can be snmpllﬁed and the resulting equations for F,;, U, and F,;, to the lowest

order, are: o B B B
=_%m—<mi,%;+m{i%>+g(u &F,), (18]
6(1;20 + f" ‘;—i,z:” + Fz,,aixk (%") + Fyy ai;,k (':';22’) + Fy 61)(,( (’:‘;:')
_ai/‘,k(m;,m;,m;k/ég —(m;,g—;+m;,‘2_;>+§(ul & Fyy), (19]
and B B B
(D) )
S S ()

d (mim;,
m— j
m"axk< A )

& 0P & 6P’ C C_ .
= : . F, )+ — F, —T). 20
m2/ X, pzmn aX 6l(fz W U)+p2 G\ Fy, u) [20]

The Lh.s. of [18] can be rewritten as

oF;
ot

where (£ F)) is the Lie derivative of F, in the direction of the fluid, w is the mean vorticity and
[w,F,] the commutator of @ and F,. The two first terms represent the time variation of the tensor
F,, along the motion of the fluid. The last term is a rearrangement term among the F, components,
because it has zero trace. The source term for turbulence due to the rotation and stretching of the
mean fluid elements is imbedded into the covariant derivative £ F,. The additional terms are other
correlations that require modeling. Equations [18]{20] are coupled to the mean flow equations,
consisting of [12]{14] and the mean momentum equations

+(LF); =, £,

om, & [mym, Fu_ 0P T —
A +8_Xk( e', + X, p 8X —(C mm &m,,) (21]
and
omy 8 (mymy Fy_ 6P T
N + X, < % + X, P ﬁ — (szl: flmm) (22]

2.2. Dissipation of turbulent energy

We have restricted ourselves to the scales of the turbulence spectrum that are sufficiently large
for the two-field equations to be valid. Even within the limit of this model, there is a matter of
considerable importance that must be addressed, regarding the question of dissipation in the
equations for F,;, and F,;. The normal derivation of the turbulence energy decay rate ignores the
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cascade process from structures of wavelength 4, to structures of smaller wavelength 4, , |, ¥n. The
rate of decay of turbulence S,,,, is the source rate for turbulence of order n + 1, F, .
Then we write

dF,
dr

= On_1n T Sn.n+|'

When an equilibrium is reached, the decay rate S,,,, for any n, is exactly balanced by the
ultimate dissipation of the smallest scale eddies into heat as a result of molecular dissipation. The
source rate S,, is the turbulence rate provided through the mean-flow instabilities.

This allows us to calculate the decay rate of turbulent energy into heat using the cascade process
from large-scale structures to smaller ones. This differs from the usual derivation of the transport
equations for the Reynolds stress-tensor components from the Navier-Stokes equations, which
leads to the introduction of the energy-decay-rate tensor arising from the viscous dissipation term,
as in Daly & Harlow (1970).

In the single-fluid case, it is shown in Besnard & Harlow (1985) that the decay of large-scale
turbulence to smaller-scale turbulence can be obtained from a careful reinterpretation of the
transport terms of the Reynolds stress-tensor equation. In the two-field case this alternate method
of derivation becomes essential in the absence of viscosity, and in any case is preferable in that
it shows the crucial identification of decay as coming from the energy containing eddies as a result
of cascade, rather than from dissipation directly into heat.

Noticing that the total momentum is convected with the mean velocity

O, = (lelk + szu>
A - - )
ap) + Gy

we only keep that convective term for the correlation T.
In order to demonstrate this, let us rewrite the transport equations for F,,, F,, and T, neglecting
multiple correlations:

e,
=2 ;C] (U, =GR+ - P (aa';,;' + ;"2) [23]
(—3%+ U’u(;i/‘f:+ FZU%+FM%—%+B,€—%
=2 ;7C2 (U, =0+ P <‘;";(j + ?;') (24]
and
a; 0. :«T T aj\’ Wt V) + T,y jal)? T Zl;k,
_ 5(2((] Fu—T)+ Cén(ézfnu T,) - & Pom’, & Pom’, 125]

g P2 ¢ p: 0X, '

in which over bars have been omitted from the mean velocities occurring in these equations.

The pressure correlations in [23]-[25] are crucial because they lead to a simple rearrangement
among the different components of the F,, and F,, tensors, and give some insight into obtaining
the deviator part of F\,; and F,.
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Contracting [23] for the first fluid and [24] for the second one, and adding the two resulting
equations, we obtain

amll P;amh

0
25(P1Flii+Pzen)= aX X

where spatial derivatives vanish because we have neglected inhomogeneities here.
We also have from the mass equations,

omj, 0¢;
p_—VN_ _p!
oX, ot
and
om}, O¢;
P—=-pP
115.¢ Ot

it

From ¢;+¢5=0, it follows that the total turbulent kinetic energy per unit volume remains
unaffected by the pressure correlations. We interpret this result to mean that only a rearrangement
among the various components of the Reynolds stress tensor can take place here. Moreover, within
our approximation, we also notice that the contraction P’om;/¢cX, must vanish to lowest order in
an expansion in powers of ¢;. Thus, we choose the simplest possible model for these correlations,
i.e. a linear model, and write

,0m; om;, 5
P 6Xi} + P OXJ —Ap,(F,kk 3 F,,,) [26]
and
omy; om}, 0,
P’ X + P’ 6X <Fw 3 qu> [27]

A few comments must be made here. First, the expressions in [26] and [27] are only a lowest
order approximation for these terms. Some ideas about their first-order approximation are
presented in Besnard & Harlow (1985). Secondly, we notice that the effects of coupling between
the two fields are taken into account in the term C/p,(U; — &F);) and its counterpart in [24]). We
speculate that 4 must be independent of C for cases in which the turbulence level is sufficiently
large, because we attribute the component rearrangement principally to displacement interactions
between particles and the incompressible fluid. We also speculate that the stronger the turbulence
the faster must be the return to isotropy for both fields. For our present goal, it is sufficient to
write 4 =a 'ow, where w ~' is a dimensionless perturbation parameter.

Let us now define ¢, = F\y/2, ¢, = Fyu/2, 1= Tiu/2 = Uy/2. We need approximations for F);
and Fy;, which we take similar to the low-order approximation usually introduced for the one-field
Reynolds stress, namely

€,
Flu JqI5u+ U

Fyy =349, + (28]

T‘l/ = §q|26i/ + T;s

5,
T; = 7‘,1 —_ <§j> Tkk‘

Notice that these expressions lead to a simplified transport equation, analogous to the k—¢ model
for one-fluid turbulence (see Besnard & Harlow 1985).

where
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Assuming a nearly isotropic case, i.e. that w is very large, we can insert [28] in [23]-[25] and keep
only the lowest order terms in powers of w ~'. We then obtain the following system of equations
for g, ¢, and ¢,

C‘h cq, Uy C _
= 2_ 2 — €9 N
2 + U5 2x, + 34 ax, o (g2 — &9)) [29]
qu an 5 6U2k C _
LM = 2— 2
pXk 3q~ an p: (ql- Elqz) [30]
and
e, g%, (U + U =S +Sa ) 31]
& A(‘;X 3‘1|2 1k % 3 269 — 4 Py (692 — q12)- [

In order to obtain the equations for ¢, ¢;, and T, we multiply [29]-{31] by J, and subtract them
from the equations obtained by putting [28] into the uncontracted [23]-[25]. We then obtain

cu,, U eu
= _g"["‘ (a—,\)%—;) — 39,5 X'k} [32)
by i

and, similarly,

[ (3Us U\ , . oUy
€ = —3a| g, 5X 8X _SqZ(Si;a—/\,k .

T} is deduced from [28] and [31]. Expression [32] are crude approximations for e ; and e,;.
Nevertheless, they have the usual form of the approximation for the deviator part of the Reynolds
stress tensor in the single-fluid case. With this preparation we can now proceed with the derivation
of the decay terms for the F,; and F,, equations.

This model is only valid for turbulence length scales larger than the length scale over which the
microscopic fluid equations have been averaged. We introduce the distinction between the
large-scale part of the turbulence we wish to describe, and the small-scale part which eventually
dissipates into heat. The decay rate between large-scale and small-scale turbulence is balanced by
the ultimate dissipation into heat, as discussed in the introduction to this section.

The procedure here is to divide the momentum m, (and m,) into three parts (e.g.
m,,=m, +m), + m3), which are assumed to be uncorelated, put these expressions into the
momentum equations for both fields and derive equations for the Reynolds stress tensors F\, F};,
F},and F3,. Itis sufficient here to work with approximate equations, and we start with the following
set of equations for F|, and F}, corresponding to the spectrum U, U\, U3) for the velocity
component U, (U,,= U+ U\, + U3):

ér\, _ @F U, U, Uy eU), oU\ U,
b4+ O e ‘{_F —F Fs F,—Y+ F 33
ét “oX, Wax, ™ axk Yax, ey, oX, T+ Pl gy 0X, + X, [33]
and
¢F;, T éF éU), au, . U, e, ol, o,
' o s Mgy U o T s W ps TV ps ) 34
& T Uk ax, Wex, T ™ox, "X, wox, T ™ox, T Yéx, (34]

Adding these equations, we recover the equation for F,, = F|, + F3},, as expected.
We put [28] into [33), using [32], and define a, = 2aq} and a, = aq} to obtain

eFy , o OFy e, o0, av, -

@t UlkaX +F|k/an+Fllkan+Fllj (QX Hlijv [35]
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where

Ul oUl\ . U U, aU,

2.5 li 1j B 1k 1i
H“f‘“"‘[(a,\’f ax,)”'f axk] {2 3X, 3%,
oUY,  3U\)\aUY  0UL O,  auL,au),
3%, ) 3%, T X, %, T ox, %,

20U [ (U, aUL\ . aU,
_: ' Ty 36
33X, [( ax, T ax, ) TR, 3l

The large-scale velocities average to zero, so that returning to our usual notation

B - _a 26U’,,~6U§, oU;, oU\ Ui, BU;,(@L{,-
YT w7 aX, 60X, \ 6X, oxX, ' X, X,
oU, Uy, 20U | (oU; oU;, oU
il ) . 7
*ax, ox, 3ox |\ax, Tox, ) T % ax, 371
A few comments must be made here. In the limiting case of a single fluid, we obtain
ouy,eu,, 0 oU, Uy,
R = [25—,\1 %, " axk<U" ax Ui [38]

The expression for H,, is obtained in similar manner.

The second term on the r.h.s. of [38] vanishes for homogeneous turbulence. This implies that
this term is not part of the energy-decay-rate tensor itself, but merely describes non-homogeneity
effects. Thus, we obtain the result described in Daly & Harlow (1970) for the energy-decay-rate
tensor

_1aujeu;,
YT 20X, 0X,

Converting to momentum variables, we replace U;, by mj/é,, which is valid to within our
approximation (in the general case, we should write u;, = m, /¢, — (m,;/¢,). We obtain

Hlij = 4V:1(Wn; - Dhj)a

MF 146C
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Contracting, we obtain

1 3 m;/ 6 m;k 5 m;, 6 m;k
D, =-{ - (T} 4 & (TN O (M) © (M
u 4<axk<5,>+ax,< a )\ex\7 ) Tax\T )

which is the positive energy-decay-rate tensor contraction, and

1[ ¢ /m\T
W, = —— | — [ ¥
'” 3 [ax,( é )] ’

which is a negative source term tensor contraction. The source term W, produces irreversible gain
of turbulence energy when the dilatation of the fluid is non-zero, which can occur in the two-field
case despite the incompressibility of the fluid. Whereas W, is of the lowest order in our model,
W, is of higher order. This means that there is not a source of energy in the case of the lowest
order model, but only a redistribution of energy among the components of F,; and F,,

3. CLOSURE MODELING

From now on, throughout this paper, we state that weak turbulence means circumstances in
which the coupling between the phases is important (analogous to weak one-field turbulence in
which closures depend on the viscosity v), whereas intense turbulence means that closures are
independent of C (just as the one-field closures become independent of v).

We consider the problem of closure for {18]-[20]), where we have added the dissipation terms.
Throughout these derivations, we use techniques that have proven effective for the study of
one-field turbulence. However, in contrast to the single-fluid case, we know that it is appropriate,
for appreciable particle loading, to have closure based on the coupling parameter C, rather than
on the viscosity of the fluid. Just as the one-fluid closures lose their dependence on molecular
viscosity in the limit of high intensity turbulence, the two-field closures also lose their dependence
on C. When the particles are sparsely dispersed, we have to add viscosity to [18]{20] in order to
get the right closure equations of turbulence in this limit.

The turbulent correlations we have to model are:

(1) correlations of pressure fluctuations with those of the momentum derivatives (e.g.
Pom7,[0X,);

(2) energy decay rates D,; and D,, and tensors W, and W,,;

(3) multiple correlations of various components of velocity fluctuations (e.g.
mimymi., m3 ¢ JoX (mim[i). -

(4) correlations of pressure fluctuations with those of the velocity P'mj,.

3.1. Closure for P (TX,+ 7

J

We have already described a closure for

om,. om;,
P’ ! :
(ax, " a)c)
in [26] and [27]. Dimensional arguments suggest that this quantity may be proportional to the
square root of the intensity of the turbulence. We propose here:

omy; omy; w zy
P’ (@_XU + @_Xl> =kip, 3 (BiFiu + BoFa)'? <§1 Floe — Fli/)s [40]
: j

where s is the turbulence length scale, and &, §, and f, are coefficients of order unity. The closure
for the corresponding term for the second fluid is obtained by exchanging the indices 1 and 2.
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As in the one-field case, it is possible to describe a very simple closure for the energy-decay-rate
tensor. We have noticed that W,,, must vanish within the limits of our lowest order model. The
reader is assured that the redistribution of energy among the components of F,; and F; is taken
into account in the closure [40].

3.2. Closure for D\, and D,

For the decay terms D,; and D,,, we propose here a simple closure, where D;; and D,; are
proportional to the Reynolds tensors Fy; and F,;, respectively:

D],j—- —v—sw< )(B]] lkk+ ﬂl"FZkk) ZF]U, for the first ﬁeld; [41]
e
and
D= - w( )(ﬂle,kk + BnFu) *Fy, for the second field;
12

where the fs are unspecified numbers of order unity, s, is some reference length scale, and y is
a dimensionless function of (s/s,). For the dissipation term in [20], we propose the following term:

1 v <i)<F_lkk Fo 2U_,(k>"2le’
Vs So (| 62 C|CZ

which satisfiies the requirement that this term must vanish when the two fluids are identical. In
the above expression we chose v, = 5./2q,.

3.3. Closure for the multiple correlations
Define the quantities

A.,/ m,,m,,m.,,

A ,‘2;‘1 =myumymy,

B:l;/ =mim;m}
and

B:’ﬂ = myumymy,.

One can derive equations for A}, AZ, B, and B} 7 in a manner similar to that for the tensors
F,, and F,; (see Besnard & Harlow 1985). For steady-state turbulence and homogeneous mean flow,
the equation for 4}, (and, similarly, for A?2) reduces, to the lowest order, to

1 oP’ , , 0P’ , , 0P
3 (mnml/ ("X +m;m ”_(37i +mmy, TX,) 8Xk (FIqFlkI+ FiuFy+ Fl/kFlll)+al(s)A1/I
aF,,, oF 3F,/k

an —Fy= ax, - Fu=- BX‘ [C (Biyj+ Bjy+ Bjy) —36,4}]. [42]

For the case of high intensity turbulence, which is likcly to be independent of the coupling (as
well as the viscosity), we neglect the coupling term in [42].

As a first step, we keep in [42] only those terms which we recognize to be described as
self-diffusion of the turbulence in the equations for F\; and F,; so that

€F|U+ aFllk aFllk)

Ailjlz —ay(s) I(Flk/ X, Ey/ X, + Fy X,

and, in similar fashion,

OF,, OF OF.
A}ﬂ= —02(3)_l(F2k1572:+F211 a;k Fy £k> [43]
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In the weak turbulence case, we do not neglect the coupling terms in [42] and have to solve a
more complicated algebraic system in the variable A}, A}, B}, and B}, which is presented in
Besnard & Harlow (1985).

Expressions [43] are symmetric in /, j, /, as they should be (see Lumley 1978).

In order to get closure for the correlations m; 8/6X,(mj,m7/é)) and my 0[0X,(mym3JE,), we
multiply the momentum equations for m,, and m,; by m’; and m;, respectively, and then add the
resulting equations and take the derivative of the sum with respect to X,. We then multiply the
result by m,. We also multiply the equation for m,, by 8/0X,(m;m,) and add the result to the
previous equation and take the ensemble average of that sum. The momentum equations are used
to eliminate all the derivatives except ¢/0t[m3 @/cX,(m;m})]. We then make our usual assump-
tions of steady-state, homogeneous turbulence, and neglect the coupling terms and quadrupole
correlations. As before, we ignore the pressure correlations for the sake of simplicity. Using the
fact that the correlation m{(dm3/cX,) is negligible within the limits of our approximation, we
propose the closure

;@ (mim\ s @ é (Fb é é (T, d d (T,
'"W( : )“V[axk(&'aﬂ : ))m—; Puax\7 ) Yax\"vax\7)) |

[44]

with V = (B, Fi + BaFau)"”.
The expression for the correlation my; ¢/cX,(m3my/¢,) is obtained by exchanging indices |
and 2.

3.4. Pressure velocity correlations P’m;, and P'm’,

If we start from the equation for m,, and take its divergence with respect to x, neglecting the
higher order term in ¢%;/dt%, then apply Green's theorem on the fluctuating pressure and multiply
the result by m;, and finally take an ensemble average, we obtain

— pwn P , “-8 1 ¢ (mymy C dx’
m P X)=+— | mi{X)—=| - = | —— | — — (¢my, — ;;m,) |(X') —, 45
m, P’(X) 47['[ i )OX,|:(|5Xk 6 plfl(‘ 2 2 1;)( ) , [45]
where r = | X — X’|. and the integration is performed over the whole space. However, because the
fluctuating momenta are not correlated over distances exceeding the largest scale length of the
turbulence, we can restrict the integration to a finite volume centered in X, and of radius s.
For the lowest order part of the integral (in terms of ), we propose:

—_— OF & (m,\0F,
WP = —{ CosFIE =2+ Cops? | =) 2 ), 46
my, ( PISE ik 5X,+ PS X\ ) ox, [46]
using the assumption that the mean variables can be considered as slowly varying over the
distance s.

Thus, the conservative pressure correlation

¢ ¢
— (muPY+ == (mP’
[axl(mll )+6Xi(mlj )}
can be decomposed into two parts, self-diffusion and diffusion due to the mean shear stress.

As a summary, we give in appendix A the model equations for F,;, Fy; and T, which include
all the previous closures.

4. INSTABILITIES OF THE TWO-FIELD FLOW

The goal of this section is to relate the instabilities of a two-field flow to the developed turbulence.
We analyze the problem of coherent instability of the fluid equations for a two-field flow in the
absence of the viscous energy dissipation.

When a steady-state solution exists, two possible interpretations can be given. One of these
considers that the flow field consists entirely of a time-varying mean, for which there is conceivably
a steady state. The steady state, however, is unstable in the absence of viscous energy dissipation.
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The other interpretation considers the ensemble average of the fluctuating flow to be the mean-
flow part, with the rest described as turbulence. Any perturbation to the mean flow is trans-
formed into fluctuational energy. We show, using this fact, that the turbulent stress tensor can
stabilize both the linear and non-linear perturbations to the flow. Here F; plays the same role
as the collisional pressure in Needham & Nerkin (1983). With a linear analysis of the equations
in the absence of identifiable turbulence, we derive the rate at which mean-flow energy is
transformed into fluctuational energy. The next step is to identify the fluctuational part of the
flow as turbulence and to use the energy transformation rate as a source to the turbulence
energy. The third step is then to use the energy transformation rate as a source to the turbulence
energy.

At the end of this section, we show that this source term to the turbulence energy can be exhibited
directly from the Reynolds tensor transport equation through a careful examination of the different
pressure correlations.

To study the coherent instability of the non-turbulent two-field flow, we linearize [7}-{11], to
which we have added the gravity terms. The zeroth-order solution is chosen to be the steady state
for a fluidized dust bed, in which the pressure gradient balances the overall hydrostatic gravitational
force. From the resulting dispersion relation we deduce the growth rate w* of a perturbation of
wavenumber k. In the weak coupling case, w* is proportional to the zeroth-order mean velocity
difference, |u}—uY. In the strong coupling case, w* is proportional to (u}— u3)?/C. The
fluctuational energy E; contained in any disturbance grows according to the equation
dE;/dt =2w*E,.

Consider now equations for turbulent two-field flow. Equations {12]-[14] and [21]}-{22] contain
additional terms, when compared to [7]-[11] due to the presence of turbulence. We include as a
source in the turbulence energy equations this same amount of fluctuational energy, which, in turn,
will be balanced by the decay terms.

In this interpretation, the investigation of stability again introduces perturbations into the mass
and momentum equations for the mean flow. The turbulence energy equations, however, already
represent the effect of the fluctuational part of the dynamics, and, accordingly, are not perturbed
in this analysis.

It was found by Besnard & Harlow (1985) that, for given disturbance of wavenumber k, there
exists a certain level of turbulence above which this perturbation is stabilized.

Define the quantities

q q
H=P1_olz+P2_02p
€ €

A,=piS+ pael,
13 I3t
B=C+ <Pl"n _(2) + PV —(l)>k2,
€, €

B, = 2k(c\pyul + eSp,u?)
and
0,0 4 0,0 2 € o &
Ci=k| Cleyui+quy) +k plle(—oul+p2v12€_0u2 .
1 2

The level of turbulence which stabilizes the disturbance is obtained through the condition

C
kB,

H = €gu?zpl + (?plugz + (ArCi - BIBi)v [47]
since H depends on the turbulence intensities g, and g,.

The intensity of turbulence which is retained must be a steady-state solution of the turbulence
[A.1]-[A.3] (see the appendix) and balance exactly the loss of mean flow. For the sake of simplicity,
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we only retain a few terms in these equations. We have
1.2 3

C
2—(q—q)— )~q_lql +2w*q, =0,
/ N

1.2

C
2—(@gn—aq)— 4 9 g, +2w0*q, =0,
P2 s

v

(48]

3 ¢
c-: (69— q1) + c- (€24, —gq12) = 0.
P ) J

The terms with Z are simplified versions of [41]. Consistency between [47] and [{48] determines
a smallest value for the parameter 4. It is shown in Besnard & Harlow (1985) that the system [48]
always has a positive solution (gq,, ¢,), as expected.

This linear analysis supports the direct derivation of a source term proportional to the mean
velocity difference between the two fields. In this case of transition from instabilities towards
turbulence, the developing turbulence is very small at the early stages of the process and our
assumption of negligible correlations in ¢ is no longer valid. Then we consider the term in [45]
which is proportional to C(¢,my, — €;m,).

Equation [46], therefore, presents an additional term which we model as

2 ’
miPe=CnC i gix (G, — Ey). [49]

The correlation m7, Jc;/0X; can be modeled as in Lumley (1978). For the sake of simplicity, we take
a gradient-type approximation for it and [49] becomes

—_— ) ¢%, m, m,
WPr= —CpCsF, ——— | =2 —— .
m ¢ pal S Ly X, 6X]< Z g > (50]

As a consequence, the conservative pressure correlation

6_Xl(m|ip)+a‘/fl(m|jp)

includes additional terms, among them source terms proportional to the mean velocity difference
between the two fields, as expected.

The full system of tensors [A.1]-[A.3] in the appendix will be solvable analytically only for very
simple circumstances, and even the use of numerical techniques will often prove difficult for
complicated problems. From this set of equations, it is possible to derive a simplified model, like
the “k—¢”" model for single-fluid turbulence developed by Launder er al. (1975). The complete
derivation of such a model is not discussed in this paper, since it is beyond the scope of this work.
However, even at this stage of complexity, it is possible to give an interpretation of the model for
some limiting cases.

5. LIMITING CASES

The goals of this section are to interpret [A.1]-{A.3] (see the appendix) in terms of their
consequences for several simple problems. These include the diffusion and wave-like transport of
the volume fraction, the coupling decay of homogeneous turbulence and the decay of turbulence
in a gas as a result of inertial loading by imbedded particles. Simple analysis of these problems
can neglect the effects of the triple correlation and the pressure correlations and the source and
dissipation terms in [A.1]-[A.3].

Considering [A.1]{A.3], together with the equation for the mean volume fractions, and mean
momenta, and dropping the overbars for convenience, we have the following set of equations:

% amu_
ar ' oX,

0, (51]
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66 om
= * oy =0 [52]
k
om, ¢ (mm,\ 0oF, C ¢ OP
— e — =— = -, 53
o +5Xk< ) X, p (6my — e;my) 0, 0X, (53)
amz, a my; Ny, 6F2ik C € aP
o ¢ == (e — emy) — 2o, 54
2 +5‘Xk< G X, pz(fzmh €my,) 00X, [54]
oo Fy; ém,kF,,/ 0 (my o [my 0 (m,
ar T ax, To|fuax\e )T Peax T ) T Eeax\
—2C (U, 6 F)), {55]
6(2F2U amqu,, d [(my o [my 0 [my
R dde N hr R WIN N e
o Tax, te|fugp\ )T eap S ) TR\
€2
=ch_(u,,_e,p2,,> [56]
2

and

oT; oT, & [(my my ¢ [my my e [my,
v T TRk AR (dda LA 2 DR A el
+U"6 + 1 ( + € +T“6Xk € + 6 + vox \ ¢

d (m cé
+ Txk an< 21) [T| ((IFZI/ ) + C (C’th lj)' [57]

5.1. The strong coupling limit

To non-dimensionalize this system, we scale according to the following dimensionful quantities:
time T, distance X, volume flux M (such that MT = X), pressure P, density R, pressure RM? and
coupling T/R. The system [51}-{S7] is formally invariant, and, for convenience, we consider these
equations for the strong coupling case C > 1. This means that the coupling between the two fluids
is the dominant process. In this limit we ordinarily expect the two mean-flow velocities to approach
each other, m,;/e;«>my/c,. Our purpose here, however, is to show that the presence of turbulence
can alter this expectation, in particular to produce a balance between the gradient of turbulence
energy and the persistence of a non-zero mean-flow interpenetration. This paradox is not only
consistent with the equations, but it is also intuitively plausible when we recognize that microscopic
tight coupling does not preclude the presence of turbulence, which can mix the fields in the presence
of a volume fraction gradient. This circumstance accordingly represents the diffusion limit. We thus
explore the possibility of the following expansion in the small parameter C~':

Fu=CY.CTF =L el m, =3 C mi

F’U_CZC "FS'J’ (2=ZC—n( n); m2i=zc_"m(2’;); P=ZC—np(n);

T,=CYC~"TY, U,=CY C"U".
To the lowest order in (C '), [51]-{57] become

o' om'Y

a T =0 (58]
(3] 0)

o | omiy _, (59]

ot + oX,
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eF9 1
— (eOmP — POm®), 60
an pl ﬁ S & 1 [ ]
FY 1
T = Om - Om®), f61)
UP = PF, [62]
UQ = ¢OF() [63]
and
T(O) — T(O) U(O)‘ [64]
Equations [58] and [59] give
¢
W (m(ol + m(o)) -
k
so that we obtain a momentum conservation equation
m$) + mQ = (curl y),,
in which ¥ is an arbitrary vector independent of time.
Equations [60] and [61] become
ﬁ (0 F) = —m + ¢ Pcurl ),
k
and
2 (02F9) = —m + Pcurl ),
k
By addition, we obtain
(P|F(1.k+PzF(,k =
so that
P F+ o F = By, [65]

in which &, is an arbitrary tensor independent of time with vanishing divergence. This equation

describes the conservation of turbulence energy; it also represents a consistency condition between

the initial turbulence energy levels of the two fields in the limit of strong microscopic coupling.
Using [62] and [63] and the condition ¢! + ¢{¥ = 1, {60] becomes

oF,, I&U‘°’+ U, 2®
X, P8 (c“”)2 6X,’

so that

L aU® U9 ™\
m‘l?) = _pl(@ axll + (C (0))2 0/‘3) ((l ,BI" [66]

where B, = (curl ¢ ), represents the mean translational velocity in any homogeneous region.
With [62], [63] and [65], we can solve for U’ and insert the result in [66]. This, in turn can be
combined with [58] to give

oe'® é D, e ¢ o
o PPy, oX, <p e ¥ pe®oX,) oxX, (c"By). [67)

This equation for ¢{” includes both convective and diffusive parts. In the special case where
B =0, this formulation shows the result that other authors have derived in a very different manner,
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namely, that the diffusion of the fluids can be driven by the turbulent kinetic energy (e.g. Lumley
1975, 1978).

This result also can be used to support the gradient approximations that are proposed for closure
of the turbulence equations.

5.2. The weak coupling limit

The above behavior only occurs if the dominant phenomenon is the coupling between
the two fields, as may occur, for example, with very small and/or lightweight particles in
a fluid. For other circumstances of multiphase flow, the coupling can be considered weak
enough that C < 1. Neglecting terms including C, we rewrite [5S1]-{58] for a one-dimensional
geometry:

G+6=1,

ce,  Om,
ht) =0.

6t X

d, om,
__- “=0,

ot + éx
6m,+i m? +8F,+(,0P_0
ot X\ ¢ ox " pox
om, & [(m} 6F2_+_c2 8P_0
&t ex\e/) 0xX  péX

ce F,  émF d (m,
3¢FF—={—1|=0

ot + cx +o 'ox \ ¢

and

d,F, Om,F, d (m,
3, F5,— | —]=0.

ar Tax Tohax\G

Thus the coupling between the two fields is accomplished only through the pressure term and
the condition ¢, + ¢, = 1. Studying the problem defined in figure 1, it can be shown, in the limiting
case ¢,/p, < ¢,/p, that the velocity of the turbulent front is then m,/¢, + (3F,/¢,)'?.

The characteristic parameters of the solution are

Cm = %(CIR + €,0),
Fion=%or + )

my, = 3a(eiq — €0),

i (35 g

€im €im
c _ _m_lm <3 ﬂ 12
" Cm tr)
é =%_ (3 ﬂ)l 2
- €im L

For initial conditions consisting of a step function in ¢, centered at X = 0, with m being zero for
all positive values of X, the subsequent behavior of the fluid can be described as the propagation
of a wave in each direction. The front of each wave is of finite extension (& — &,)t and (&, — &)t.
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€
$20 !

‘1 R

Figure 1. Initial condition for the volume fraction ¢, in the weak coupling limit; ¢ vs the space
coordinate x.

Within the two transition regions, the solution is described by the equations:

Fi=—3¢) " — B
6= —33¢) "HE = Bo). [69]

my =Y3a) 1E - th)(BL 4 —zt&)

in which ¢, = Fy e’ and B = m, /¢, + (3a) %, in the left transition region; and
F = _%(3%)1:2({ - ﬂR)B,

G = %(3(51)" PHE — B (70]

m = %(3(;1) "~ ﬁn)(ﬁk - ¢ 2BR>,
in which e, = Fige @ and Br = mg fe,r — (32)"2¢ (g, in the right transition region (figure 2).

In the more general case for which p, is neither small nor large compared with p,, the solutions
are more complicated but nevertheless also exhibit this wave-like behavior in the weak coupling
limit under consideration.

The results of this and the preceding section resemble similar results from the investigation of
two interpenetrating gases initially separated by a membrane. The random (Maxwell-Boltzmann)
velocity fluctuations correspond to the turbulence in our two-fluid model. If the mean-free-path
of the molecules is large, then there is negligible coupling between the two interpenetrating gases,
and each propagates as though freely expanding into a vacuum, with wave-like rarefactions going
in all directions from the initial point of contact. If the mean-free-path is short, then there is strong

€

Figure 2. Self-similar solution for the volume fraction in the weak coupling limit; ¢ vs the self-similar
variable & = x/t.
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coupling and the interpenetration becomes a diffusive process. In both extremes there is a net mean
velocity in each of the gases, just as we obtain in our two-fluid turbulence model based on m and
¢. A model based on u and ¢ would not show these two distinct interpenetration velocities, and
would exhibit only the diffusion limit, as discussed in section 1.

Available models usually use a diffusive-like evolution equation for ¢, and therefore would not
show these two distinct interpenetration velocities, as discussed in section 1.

5.3. Decay of turbulence

There are several important features of our turbulence model that can be exhibited by a
consideration of the decay in homogeneous circumstances without source terms. In particular, we
examine the late stages of decay, when the coupling effects are dominant, rather than the cascade
decay of energy when the turbulence is more intense. We consider the system [SS}H{57]. With
homogeneity, the different components are decoupled. We obtain the simple system

0F, 2C
—6;—/ =p_(Uij_‘2F|i;)s 71]
|
cF,;, 2C
_é’li/ =7)_(UU_CIF2U) [72]
2
and
aU, Ce Ce
E_/ = p_2 (eFy— Uy + p—‘ (&2F1;— Uy, 73]
. 2

where ¢, and ¢, are constants.
With U, =m{m;, F,,=m_m[e, and F,, =m3m}][e, we can combine [71]-{73] to show that

a ml ml‘ Ii ml,
= (p\Fyy + paFy) = 2C,6,2U, — Fyy6; — Foy)) = 2Ce,0of =2 = Zu)( B2 _ ),
ot 6 N g

This shows that the contraction of the tensor U, — ¢,Fy; — (,F, ) is 20, so that turbulent kinetic
energy per unit volume, p,F,; + p,F,, monotonically decays in this circumstance. In addition, we
can combine [71]-[73] to obtain

C
% QU, - ,Fy— F)) = — 2C(f)lz + p—zl) QU, — €,Fy;— ,F,,).
This shows that the components of this tensor also decay monotonically, each in proportion to
itself, suggesting a tendency for any arbitrary distribution of turbulence between the two fields to
approach a specific apportionment in which 2U;— ¢, F,, — ¢,F,;=0. However, if an initially
specified apportionment is such that U, = ¢,Fy; = ¢, F,;, then the turbulence does not decay as a
result of coupling, and would then dissipate only as a result of the presently neglected viscosity.

6. CONCLUDING REMARKS

In this paper, we have developed the first stage of a two-field turbulence model, which rests on
the rigorous derivation of the turbulence energy equations from the two-phase fluid equations and
the provision of a closure of these equations. This paper presented the Reynolds averaged set of
transport equations for incompressible two-phase flow. The volume fraction of the dispersed phase
must be small enough that the assumption of no interaction between the particles is valid. However,
this restriction does not imply that the dispersed phase must be sparsely dispersed. Much remains
to be accomplished. Of interest is the validity of the low-order approximations that we have
described in this paper.

We have derived in section 2 the decay term for our model by considering the cascade of energy
from large-scale turbulence to small-scale turbulence.

Section 3 presents the closures for all of the correlations involved in the momentum equations
and in the turbulent field equations. In many cases the closure relies strongly on the inclusion of
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decay, either the cascade decay or the coupling decay. These terms are especially important for
triple correlations, for which these decay terms have not been rigorously derived. Also, the
modeling of the pressure correlation terms are not yet fully understood. In any case, whatever
models are proposed will have to be substantiated by comparisons with experiments.

Section 5 discusses several interpretative features of our model. For example, in the case of strong
coupling we obtain the model of other investigators for the diffusion of the volume fraction. In
contrast to the previous models, we also show a weak-coupling, wave-like limit similar to that of
diffusing dispersed gases, and we give a precise estimate for the velocity of such waves. We have
also examined the properties of turbulence decay as a result of coupling between fluids. In each
case, the analysis has utilized numerous approximations, which will require further investigation.
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