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Abstract--We establish in this paper the foundations of a two-field turbulent flow model that includes 
two turbulent fields. The case of dispersed particles in an incompressible carrier fluid is treated here, but 
the very presence of these two fields allows for the generalization of the model to the instability-induced 
turbulent mixing of two materials. This model describes both cases of turbulent mass diffusion and small 
drag regime, "wave-like" interpenetration of the two components. It also includes the damping of the 
turbulence due to the presence of the particles. In addition, a theoretical derivation of the drag-induced 
decay of the large-scale turbulence kinetic energy is proposed as another mechanism specific to turbulent 
multiphase flow. 
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1. I N T R O D U C T I O N  

Turbulence in two-phase flow has been a subject of  interest for many years. However, only low 
concentration suspensions are relatively well understood; in such a flow, the turbulence of  the 
mainstream is not affected by the dispersed phase. Those cases when the turbulence in the 
surrounding fluid is affected are much more difficult. 

Experimental work has shown that the presence of solid particles or liquid droplets modifies the 
turbulence structure. On the theoretical side, very little is known. Turbulence models, as in 
Elgobashi & Abou-Arab (1983) and Margolin (1977), predict the effect of  particles on the 
turbulence intensity. However, these earlier studies investigated the limiting case of a small volume 
fraction for the dispersed phase. This simplified the model, requiring equations for the carrier fluid 
only. The difficulty with any two-phase turbulent flow model resides in the interaction between the 
dispersed particles and the carrier fluid (e.g. Daly & Harlow 1978). Two different approaches have 
been used to describe the behavior of  particle-laden turbulent flow. Using the dynamics of  single 
particles, some authors, such as Gouesbet et al. (1984), obtained turbulence intensity correlations, 
and Margolin (1977) calculated the diffusion coefficient for particles in a turbulent flow. The other 
approach is to use averaged field equations (see Nigmatulin 1979) to develop a turbulence model, 
as in Elgobashi & Abou-Arab (1983). 

We investigate here the case of  a larger volume fraction and develop the foundations of  a model 
accounting for two different turbulent fields. This will allow for its generalization to the description 
of  such phenomenon as the instability-induced turbulent interpenetration of two materials (see 
Besnard & Harlow 1987). Also described by this model is the drag-induced decay of large-scale 
turbulence kinetic energy, and the limiting cases of  turbulent mass diffusion, and a small-drag, 
"wave-like" interpenetration regime. The more classical features of  return to isotropy, and damping 
of the turbulence kinetic energy due to the presence of particles in the surrounding fluid are also 
accounted for by the model. 

We start here with two-phase fluid equations, and, as it is necessary to proceed in a stepwise 
manner,  we restrict ourselves to the case of  rigid particles in an incompressible fluid. In these 
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[1] 

&~ &,U,J_O, - -  + [2 ]  at aX, 
dE2 ~,E2U2j _ 
- -  + - 0 ,  [3 ]  at a,X, 

aGUj, &lUliUlj ~. ~P K 
- -  + -  - + -  ( U 2 , -  U t , )  [4 ]  

at ~X, p, aX, p~ 

a, qU2, C~¢2U2,U2j ~, ?,P K 
- -  + - -  - " + -  ( u , , -  u 2 , ) ,  [51 

dt cqXj P2 ~'Xi P2 

equations, the field variables have been defined by appropriate averaging (Nigmatulin 1979): 

q W Q = l ,  

where E, and E2 are the volume fractions of the particles and the incompressible fluid, respectively, 
p. and /92 are their microscopic densities, U,i and U2i are their velocities and K is the coupling 
function describing the interaction between the two fields. The pressure gradient OP/OX~ is obtained 
after a careful integration of  the microscopic gradients in the control volume (see Nigmatulin 1979). 
At a given point x, it represents the external forces that accelerate solid particles or fluid elements 
located at x. In the case where the particle size is not small compared to the length scale of interest, 
the above averaging is not possible, and pressure would have to be defined within and outside the 
particles. Terms describing viscous effects have been omitted, due to the difficulty of defining the 
viscosity of the dispersed phase, and there are no collision terms. In order for our model to 
approach the usual single-phase turbulence transport equations, it is necessary to include the effect 
of viscosity as q---,0. Away from that limit, however, the effects of momentum exchange between 
the fields predominate, and the viscous stresses are negligible. We are therefore restricted to a 
certain range for q. The lower limit, ¢~ m~,, depends on the level of viscosity; the upper limit, q . . . .  
occurs when the collision rate between particles becomes important. 

It is assumed (see Daly & Harlow 1978) that K can be modeled as the product of E,~2 and a 
function that depends only on the local properties of the two fields, e.g. 

K = CD¢,qp2IUz -- Ull = qqC.  

We have stressed that [1]-[5] are already averaged. This means that the size of the particles is 
assumed to be much smaller than the size of  the control volume over which the averaging has been 
done. As a consequence, this also means that any length scale that we deal with in our derivation 
is also assumed to be much larger than the size of the control volume. This suggests that only 
large-scale turbulence (compared to the size of particles) can be described here. 

The usual approach for describing turbulence transport in two-field flow is to separate each of  
the variables of the system [I]-[5] into a mean part and a fluctuating part (see Lumley 1978) and 
to follow the same procedure used in one-fluid turbulent transport by Daly & Harlow (1970). For 
a single field, the results are transport equations for the Reynolds stress tensor R,j and for the 
energy-decay-rate tensor D,i. 

For two-field turbulent transport, we want to define entities for each of the fluids analogous to 
the Reynolds stress tensor. More precisely, we want to derive a conservation equation for the total 
mean momentum including the turbulent flux of momentum. One approach is to generalize for the 
two-field case models that have been developed for a single fluid. This approach is especially 
attractive when the first field is sparsely distributed in the background fluid, since the second fluid 
then determines the behavior of the mixture. The procedure is to introduce a mean and fluctuating 
part for the volume fraction and velocity of each field: 

U., = ~',, + U~,, ] 
',=L,+'I, 

U2, = U,, + U ; , , I  [6] 
~2 = ~2-+ ~. - j 

The use of the space-averaged [I]-[5] introduces questions regarding the length scale for two-field 
turbulence. Our question pertains to the relationship between particle size, interparticle distance 
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and the spectrum of  scales in that part of the flow that is considered to be turbulent. Within the 
context of two-field flow, the mean variations of  the field variables take place over distances that 
are large compared to the particle size and the interparticle spacing. We assume this also to be true 
for all relevant scales of turbulence, despite the recognition that turbulence scales comparable to 
particle size and spacing inevitably exist whenever there is relative motion between the fields. Precise 
resolution of  the question raised by this discrepancy in our assumptions can only be settled with 
much additional investigation. For now, we confine our considerations of  scales to those parts of  
the spectrum that are sufficiently large for the two-field equations to be valid. 

This is made possible by the basic assumption that the length scale of the turbulence is much 
greater than the length scale of the ensemble averaging volume, and much smaller than the 
characteristic length of  our problem, i.e. of  the mean flow. This splitting into mean and fluctuating 
parts can be applied to any variable of interest. There is, however, a major conceptual difficulty 
with the choice of  the volume fraction and velocity as the primary variables. Because the velocity 
is not a transportable quantity, it is impossible to define a conservation equation for the mean total 
momentum, p~f~ O~, + p2~'2U2~. The alternative approach, is to choose m,  = cj U,  and m2i = CEU2i as 
primary variables. This gives, for two-phase flow, the same type of model "B".  that Favre (1965) 
described for a single compressible flow. 

Having chosen m~ and m 2 as the primary variables, we still require a definition for the average 
velocities of the two fields. Following Besnard & Harlow (1985) we define O,  and 02~ as r~, = f~ Oj, 
and rfi2~ = c202,. In the limiting case of the one-field model, we recover the usual definition for the 
unweighted average velocity. The objective of the present work is to develop a turbulence model 
that accounts for the full dynamic behavior of the two fields and the interaction between them. 

We derive our equations in section 2, and show that it is convenient to introduce a hierarchy 
of models, more and more complex, in order to describe whichever level of  precision we need. 
However, we will restrict ourselves to the lowest order model. We show the necessity for a length 
scale for the turbulence, particularly in order to close the pressure-velocity correlations. We then 
show that this turbulence length scale can be eliminated from the equations through the 
introduction of an energy-decay-rate tensor, which is very similar to the tensor obtained in the 
one-field case. The different closures are derived in section 3. 

Experiments show that in many types of  interpenetrating two-field flows, there is a steady 
state for which one possible interpretation is to consider the ensemble average of  the fluctuating 
flow to be the mean-flow part, with the rest described as turbulence. In some circumstances, 
Needham & Nerkin (1983) showed that the collisional pressure P,, coming from collisions between 
particles, can stabilize both the linear and the non-linear perturbations to the flow. We show in 
section 4 that the Reynolds tensor can play the same role as Ps, and exhibit the source term for 
the turbulence equations corresponding to the instabilities of  the mean flow developing into 
turbulence. 

In section 5, we present an analysis of this model, and demonstrate that it can adequately describe 
the diffusive behavior of  the volume fraction in the case of  strong coupling, as described by Lumley 
(1975, 1978), but also that it exhibits a "wave-like" limit that corresponds to a very weak coupling 
between the two fields. We also show that the presence of the first fluid induces a strong effect on 
the turbulence of the background second fluid through the coupling terms. 

2. D E R I V A T I O N  OF THE 

2.1. Turbulent energy equations 

We rewrite the system [I]-[5] as follows: 

~ + E 2 =  i ,  

dc~ c~ml, 

+ -k7 =°' 
aE2 c~m2~ 

EQ U A TIO N S  

[7] 

[8] 

[91 
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am,, a (ml,ml,'l= (.laP C +~-~\ ,, / - ~ - ~  +-(¢'m2'-~2m'')p' 

and 

am2, P~[m2~m:,'~= Q dP C 
+ctX, \- /I P--2-~, t--(~2m"-~'m2)'p2 

m ¢ i 

Using the decompositions m ,  = m,  + m ,  and m2i = m2i + m'2i, [7]-[9] become 

[10] 

and 

~ + ~2 = 1, [12] 

c3~ ~3ml, + = 0 [13] 

a& am~ 
a--}- + ~ = 0. [14] 

The momentum equations are not so straightforward. For the first field, we obtain 

8 ~  8 ( ~  = q dP cOF, a, t_ C (r.im2 i _ ~.2m,,). [15] 

In this equation F , ,  is the Reynolds stress tensor and its expression is 

F,,,,, = (rn,m,,,,~ m,,m,,,, [16] 
\ g / (~ 

The fluctuating part C'  of the coupling coefficient C should be calculated as a function of  the 
fluxes and the volume fractions of the two fields. However, its precise expression depends on 
whether we consider Stokes drag, or flow separation drag, or any other type of interaction between 
the two fields. For the sake of simplicity, we neglect the fluctuating part of C. 

Our next task is to derive a transport equation for the tensors F,j and F2u. Let us first define 
~,~ = 1/~. Using [2]-[4], we obtain 

a, ax,a ,,( a aP at"x + c - -  - -  " b  m l j  - -  (mljm2i + m,,m2j - 2r.2m,immj~,). (m,rnu~,kO = (mlimljmjk~) + ml, c~XJ, 
P l  

[171 

Due to the definition of  F,j, the only term where ~l appears explicitly is in the gradient of 
rn,mum~k~.  Notice that ~bt = E,t~. We then can derive a hierarchy of approximate equations, 
based on this expansion. Also notice that tl  = -E~, and that ]E~[ <Z, and I, 1 (i.e. , ;  and e'2 

- 2  - 2  are bounded quantities). If h2= max (~ i, ~2), we have ~l I/~ + O(h2). However, for moderate 
volume fraction variance (i.e. ~ ~2 < ~) ,  the above decomposition of ~'t should be rearranged in the 
form ~b~ = 1/~'~ ~. (c ;/~'t)", this formal series being convergent after the averaging procedure. Taking 
an average of [17], we have 

[' z(tgT, m'irnmjm'k~ = mlimljrn'k ~ ,, \ q  l ._] 

of which we keep the first term of the series, m,mtjmu, /~.  This is equivalent to discarding all 
correlations t ;~A ; . . .  A ~ when compared to ~A ; • • • A ~. Although this lowest order approximation 
seems rather limiting, it is enough to exhibit the main properties of this model, based on a careful 
analysis of the coupling terms between the two fields. 

However, we must emphasize that the fluctuations in m contain the fluctuations in t;  thus, even 
when only the lowest order in the expansion is retained, the theory is very different from what we 
would have obtained if we had neglected volume fraction correlations altogether. Keeping higher 
order correlations in E is crucial for describing instability-induced turbulence [i.e. Rayleigh-Taylor, 
in Besnard & Harlow (1987)]. 
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After averaging [17], we obtain the correlations T~= ~ and U~= g ~ j +  Tj~). In order to 
adequately describe the interaction between the two fields, we need an equation for T~. Using the 
fact that the correlation m;~Om~/dX~ is of first order with respect to ~; (Besnard & Harlow 1985) 
this equation for T,~ can be simplified, and the resulting equations for F,p U u and F~u, to the lowest 
order, are: 

and 

dF,,j m,, OF, u F O (m_~k~ + + 

d , , -2 ( , OP' ,OP"~ 2~ 
- C3Xk(m;imumu/~J-- m u - ~ i + r n ~ - - I + - - ( U o - ¢ : F ~ ) ,  

Ot 4 g, c3X, + 2v OX * ~ + F 2 ~ - ~ \ , 2 ,  / 2),0X,~,6, ] 

d ( OP' , OP"~ 2~' 
~,X, (m'2,m'~ym~/(~) -- m;l-ff-~ + rn,,-ff-~j) + --~ C Uo - f, F2,j), 

[18] 

[19] 

w 

dT o T d_.O_(_~+m2,) d ( ~ )  T d (m._~2j~ 
~-T + " ~ x~ \ ,, --(2 + r*J S-~ + "-~,  \ ,~ / 

, dm~, d (m;i_m;k~ + mJ* , dm ~, m2, m - -  + m'2j 
C----i- m2/ dX, (2 li dX k ~ \ Ct / 

+ m'i-~k \ E 2 / 

~, aP' c2 ~P' ~ __e -L). 
- ' - -  m ~,-=-=7_.. + - -  (t(f2Fiij - T0) + ~'2(flF2,y 

Pl m2J OX, P2 ~Xj Pl P2 

T h e  l .h .s ,  o f  [18]  c a n  be  r e w r i t t e n  as 

[20] 

OFlu 
c%--V + (~oF , ) , ,  = [to, F,] 0 

where (~uF~) is the Lie derivative of ~,  in the direction of the fluid, to is the mean vorticity and 
[to,Fd the commutator of co and Ft. The two first terms represent the time variation of the tensor 
Ft,j along the motion of the fluid. The last term is a rearrangement term among the Fa components, 
because it has zero trace. The source term for turbulence due to the rotation and stretching of the 
mean fluid elements is imbedded into the covariant derivative .L~'uF~. The additional terms are other 
correlations that require modeling. Equations [18]-[20] are coupled to the mean flow equations, 
consisting of [12]-[14] and the mean momentum equations 

d [m, ,m,A  dF,~ ¢j dip "~ - -  - -  
|~I+ = -- (f,m~ -- f2m,,) [21]  -~ +S-~ \  ~, / ~ p, OX,+p, 

and 
m 

dm2i 0 (m:gnz,'~ t3F2~ /'2 t3~ i~' - -  
a---i- + ax, \ ~ j + a T  - p~ ~x, + -p~ (c2,% - ~,m~). [22] 

2.2. Dissipation of turbulent energy 
We have restricted ourselves to the scales of the turbulence spectrum that are sufficiently large 

for the two-field equations to be valid. Even within the limit of this model, there is a matter of 
considerable importance that must be addressed, regarding the question of dissipation in the 
equations for F,j and F2u. The normal derivation of the turbulence energy decay rate ignores the 
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cascade process from structures of wavelength ;.n to structures of smaller wavelength 2, + t, Vn. The 
rate of decay of  turbulence S,.,,+ ~ is the source rate for turbulence of order n + 1, F, + t. 

Then we write 

dE. 
- -  S .  _ l , .  - -  S . . .  + I .  

dt 

When an equilibrium is reached, the decay rate S, ,+, ,  for any n, is exactly balanced by the 
ultimate dissipation of the smallest scale eddies into heat as a result of molecular dissipation. The 
source rate S0j is the turbulence rate provided through the mean-flow instabilities. 

This allows us to calculate the decay rate of turbulent energy into heat using the cascade process 
from large-scale structures to smaller ones. This differs from the usual derivation of the transport 
equations for the Reynolds stress-tensor components from the Navier-Stokes equations, which 
leads to the introduction of the energy-decay-rate tensor arising from the viscous dissipation term, 
as in Daly & Harlow (1970). 

In the single-fluid case, it is shown in Besnard & Harlow (1985) that the decay of large-scale 
turbulence to smaller-scale turbulence can be obtained from a careful reinterpretation of the 
transport terms of the Reynolds stress-tensor equation. In the two-field case this alternate method 
of derivation becomes essential in the absence of viscosity, and in any case is preferable in that 
it shows the crucial identification of decay as coming from the energy containing eddies as a result 
of cascade, rather than from dissipation directly into heat. 

Noticing that the total momentum is convected with the mean velocity 

Ok = (p~mjk + p2m~, 
\ (IPl +(2P2 / 

we only keep that convective term for the correlation T. 
In order to demonstrate this, let us rewrite the transport equations for F,,p F2o and T u, neglecting 

multiple correlations: 

OFlu ~3Fi's F aUik &Uij aU,~ 
Ti- + v,, ~ +  ,,, 7 g +  r,,,-~, + ~,,, 7~7, 

: 2 c ( <  _ <r, , ,)  + r/am , ami,'l 
p, t, ax, + ax,)' [231 

dF2o &F2,j aUu aU2, F aU2, 
at + u~+F~u-~ +&'*TX7 + 'J*ex~ 

and 

aT,, 
at 

p,l'dm~i dm'2j~ 
: + o,,-, / 

aT, i d T dU,, aU:j 

[24] 

= _ C (j P ' S m ' l j  & P ' d m ' l ,  
C C2((,F2,, - T o) + -- (,(g2F,,j - T u) " - - ,  [25] 
P, P2 p, dX; P2 0)(i 

in which over bars have been omitted from the mean velocities occurring in these equations. 
The pressure correlations in [23]-[25] are crucial because they lead to a simple rearrangement 

among the different components of the Fju and F2u tensors, and give some insight into obtaining 
the deviator part of Fuj and F2u. 
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Contracting [23] for the first fluid and [24] for the second one, and adding the two resulting 
equations, we obtain 

d p,  c~m'li , t~m~ 
2 -~ (p,F,,, + p~F2,,) = - ~ ,  + P O X , '  

where spatial derivatives vanish because we have neglected inhomogeneities here. 
We also have from the mass equations, 

and 

p ,  dm_____~'li _ p ,  dE 

dX, dt 

P'  dm~i = _ p,  dE_~ 
OX, dt " 

From c~ + ~ = 0, it follows that the total turbulent kinetic energy per unit volume remains 
unaffected by the pressure correlations. We interpret this result to mean that only a rearrangement 
among the various components of the Reynolds stress tensor can take place here. Moreover, within 
our approximation, we also notice that the contraction P'dmJOX~ must vanish to lowest order in 
an expansion in powers of ~.  Thus, we choose the simplest possible model for these correlations, 
i.e. a linear model, and write 

and 

drn ij P '  t3m ii /' diu ) 
[26] 

P ' - ~  + P e L  = Ap2 F~, ~ -  F2,, . [27] 

A few comments must be made here. First, the expressions in [26] and [27] are only a lowest 
order approximation for these terms. Some ideas about their first-order approximation are 
presented in Besnard & Harlow (1985). Secondly, we notice that the effects of coupling between 
the two fields are taken into account in the term C/p~(U u -  ~2F~u ) and its counterpart in [24]. We 
speculate that A must be independent of C for cases in which the turbulence level is sufficiently 
large, because we attribute the component rearrangement principally to displacement interactions 
between particles and the incompressible fluid. We also speculate that the stronger the turbulence 
the faster must be the return to isotropy for both fields. For our present goal, it is sufficient to 
write A = a ~co, where ¢o -~ is a dimensionless perturbation parameter. 

Let us now define q~ = F~kk/2, q2 = Fu*/2, q~2 = TkJ2 = U~J2. We need approximations for Fio 
and F2u, which we take similar to the low-order approximation usually introduced for the one-field 
Reynolds stress, namely 

where 

2 ,., .~ .a_ e l q t 
F, o = ~,~,,~j . --~, 

: e _ e:u 
F,,j = ~q2o o ~ - d '  

~q~2&u + Tij, Zq =2 , 

[281 

Notice that these expressions lead to a simplified transport equation, analogous to the k-~ model 
for one-fluid turbulence (see Besnard & Harlow 1985). 
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Assuming a nearly isotropic case, i.e. that co is very large, we can insert [28] in [23]-[25] and keep 
only the lowest order terms in powers of co -~. We then obtain the following system of equations 
for ql, q, and qL,: 

cq, t~qi . ~ 'Ui ,  C 
+ Ui, ~ -)- ~q, ~ = 2 ~ (qi2 - {2qi), [29] 

oq2 "t- Uu ?q2 s ?U2, C 
~-  ~ + 3q2 ~ = 2 _ (q,. - Ciq:) [3o1 

and 

*Dql2 (~ql2 4 C U C C 
+ O, 777-.. + 7q,2 7;;-.. ( ,k + U~) = -- g.((,q, - q,2) + -- ~,(g,.q: -- q,2). 

cA,  Pi P._ 
[31] 

In order to obtain the equations for ~.,~, (2,, and T,~*, we multiply [29]-[31] by f u and subtract them 
from the equations obtained by putting [28] into the uncontracted [23]-[25]. We then obtain 

[8U,, dU,s~ dU,,~ 
e l , , :  -~a  q l t # ~ - ~ + - ~ , j - 2 q l 6 ,  s dX, J [32] 

and, similarly, 

e , . =  -,aLq2t--d- + ;q,<% • 

T* is deduced from [28] and [31]. Expression [32] are crude approximations for e~u and e: u. 
Nevertheless, they have the usual form of the approximation for the deviator part of the Reynolds 
stress tensor in the single-fluid case. With this preparation we can now proceed with the derivation 
of the decay terms for the F~,j and F2,j equations. 

This model is only valid for turbulence length scales larger than the length scale over which the 
microscopic fluid equations have been averaged. We introduce the distinction between the 
large-scale part of the turbulence we wish to describe, and the small-scale part which eventually 
dissipates into heat. The decay rate between large-scale and small-scale turbulence is balanced by 
the ultimate dissipation into heat, as discussed in the introduction to this section. 

The procedure here is to divide the momentum m~ (and m~) into three parts (e.g. 
m,,=m~---~,+m~,+m~,), which are assumed to be uncorelated, put these expressions into the 
momentum equations for both fields and derive equations for the Reynolds stress tensors F~tu, ~q,  
F~,~ and F~, r It is sufficient here to work with approximate equations, and we start with the following 
set of equations for F~,,j and F] u, corresponding to the spectrum (Ut~, Utt~, U]~) for the velocity 
component U,, (U~, = [% + U~,, + U~D: 

dF',,j ,,?Fi,,j_ i ? ;O"-FI  ?:~) F' d,U~, OUl), P, dUlls p ?,Ul), 
c-~ + [r'k ?:Xk - - F,,j ~ "k OX, - '~ OXk + F]j, ~ + ,,~ ~ + ,u O--~k [33] 

and 

?F~,j &F~,, l ?~UI,, , dUIij ~ dU',, ?'U,i g~is ~ d~,, 
[34] 

Adding these equations, we recover the equation for F~,j = F~,j + F],j, as expected. 
2 a _ S  2 s We put [28] into [33], using [32], and define a~ =~ q~ and a2 = 3aq: to obtain 

dFI~'J U dFi,j F' d~" dU,j dU1k [35] 
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where 

H'u - ~q ' L t , O X s + ~-X, ) + u --~-X-~, ] - ~ ¢[ cg X, cg X, 

[,gu',, au',/x cgu',,,, av',,, au',, ou~,,,gu(, 
+[-~7+-~7)-~7 ~ ox~ ~ ,  + ~ ox, 

2ov',,,Frov',, ov',,'x evl,]~ 
3 0::,/t,~ + ~ )  + ~0 ~::, j j 

The large-scale velocities average to zero, so that returning to our usual notation 

[36] 

{ ov;,ov;, (ova, ovt,'~,gv;, , av;,,av~, 
~,,= _a_,,o 2-o--~, ~,-, + \,~ + ox,)  ex, -'- axj ox, 

' d U ~ j ) , <  ( ~ U I , - ] ' I  [371 e,v',,,~v;, 2ov;,,p(ov;, 
- -  - -  7 " -  O t j - -  • 

+ ~x, ~x, 3 ox, Lt, ax, + ax, ax, J~ 

A few comments must be made here. In the limiting case of a single fluid, we obtain 

n,o= °' [2~u;'~v;' __(., au;, , ~ v c , ] ]  - -~L  ~x, ~x,+ o x , \  U'' ~x~ +u, ,  ,gx,)j" [381 

The expression for /~2,j is obtained in similar manner. 
The second term on the r.h.s, of [38] vanishes for homogeneous turbulence. This implies that 

this term is not part of the energy-decay-rate tensor itself, but merely describes non-homogeneity 
effects. Thus, we obtain the result described in Daly & Harlow (1970) for the energy-decay-rate 
tensor 

I dUb dUij 
Do = 2 dXk OX~" 

Converting to momentum variables, we replace U~, by mhl~i, which is valid to within our 
approximation (in the general case, we should write uh = m./E~- (m.-~O. We obtain 

B.j = 4v . (W. j -  Dlu), 

where 

• I 
Y t l  : a l ( D  , 

w,,j = - ox, \ ~, ) \ax~ \ c, ) ax, \ E, i /  

and 

D,,,= ~ -~* \ g, i 
I m ; , W  ' I.,;,X , (m;.]] 

(-,.))] ,,9, 

±(m~,~±(m~,l_ ± (m~,l±(m~Al 

M F  14 ~" 
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Contracting, we obtain 

1/  a {m;,\ a fmI~'X'XI" d I'mlt'X ~ (mlk~ ,  

which is the positive energy-decay-rate tensor contraction, and 

l F - W , . = - ~  - -  _---- , 
Lax, t, ,, / j  

which is a negative source term tensor contraction. The source term W,~ produces irreversible gain 
of turbulence energy when the dilatation of the fluid is non-zero, which can occur in the two-field 
case despite the incompressibility of the fluid. Whereas W,/is  of the lowest order in our model, 
W~, is of higher order. This means that there is not a source of energy in the case of the lowest 
order model, but only a redistribution of energy among the components of F,j and F2~. 

3. CLOSURE MODELING 

From now on, throughout this paper, we state that weak turbulence means circumstances in 
which the coupling between the phases is important (analogous to weak one-field turbulence in 
which closures depend on the viscosity v), whereas intense turbulence means that closures are 
independent of C (just as the one-field closures become independent of v). 

We consider the problem of closure for [18]-[20], where we have added the dissipation terms. 
Throughout these derivations, we use techniques that have proven effective for the study of 
one-field turbulence. However, in contrast to the single-fluid case, we know that it is appropriate, 
for appreciable particle loading, to have closure based on the coupling parameter C, rather than 
on the viscosity of the fluid. Just as the one-fluid closures lose their dependence on molecular 
viscosity in the limit of high intensity turbulence, the two-field closures also lose their dependence 
on C. When the particles are sparsely dispersed, we have to add viscosity to [18]-[20] in order to 
get the right closure equations of turbulence in this limit. 

The turbulent correlations we have to model are: 

(I) correlations of pressure fluctuations with those of the momentum derivatives (e.g. 
e '~m ~,/c~Xs); 

(2) energy decay rates D , / and  D2,j and tensors W~,j and 14"2,:; 
(3) multiple correlations of various components of velocity fluctuations (e.g. 

m ;,m i/m ;k, m "2: ?/aXk(m ;ira ik/~-I). 
(4) correlations of pressure fluctuations with those of the velocity P'mi~. 

,{aml, ami,~ 
3.1. Closure for P t ?~, + ~ f  ] 

We have already described a closure for 

/'am'v am ;,'X 

in [26] and [27]. Dimensional arguments suggest that this quantity may be proportional to the 
square root of the intensity of the turbulence. We propose here: 

p,  ( ~  + am;~'] s ( ~  F,,k Fji/), [40] OXj ] = k,p, ~ (fl,F, kk + B2Fuk) ''2 

where s is the turbulence length scale, and k~, fit and f12 are coefficients of order unity. The closure 
for the corresponding term for the second fluid is obtained by exchanging the indices I and 2. 
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As in the one-field case, it is possible to describe a very simple closure for the energy-decay-rate 
tensor. We have noticed that W~** must vanish within the limits of our lowest order model. The 
reader is assured that the redistribution of energy among the components of Flu and F2e is taken 
into account in the closure [40]. 

3.2. Closure f o r  D,o and  D2u 

For the decay terms Dju and D2u, we propose here a simple closure, where Dju and D20. are  
proportional to the Reynolds tensors Fro and F20, respectively: 

Oh j = L d/ s (flNFl~ k + fll2F2kk) Fiq, for the first field; [411 
V t l S  

and 

'(;o) D2, ~ = - - -  d/ (fl2tF~kk + [322Fuk)l'2F20, for the second field; 
Yt2 S 

where the/~s are unspecified numbers of order unity, So is some reference length scale, and ¢ is 
a dimensionless function of (S/So). For the dissipation term in [20]. we propose the following term: 

Fuk 2Ukk'~l'2T, 
v :  \ S o / \  c, C: C1~'2 ] " 

which satisfiies the requirement that this term must vanish when the two fluids are identical. In 
the above expression we chose v t = s 2x//~L~. 

3.3. Closure f o r  the mult iple correlations 

Define the quantities 

,4 ~1 = m l,m'jim'w 

2 t t r A ul = m2,m2/m2l, 

B ~, = m ;ira 'l/m "2, 

and 

B,~ ' ' ' I ~ m 2 i m 2 i m l l .  

One can derive equations for A ~, A ~, B~, and B~, in a manner similar to that for the tensors 
F,j and F2u (see Besnard & Harlow 1985). For steady-state turbulence and homogeneous mean flow, 
the equation for A ~t (and, similarly, for ,4 ~t) reduces, to the lowest order, to 

1 (m;,m; , 0e') - -  - -  " - (FmoFikl + F j ~ F t z +  Fl/ ,Fl#)+al(s)A~/i  p, + m"'n" ox, + " L m "  x, 

OF,,: F OF,, OF,s , _C [g,(B]o + B:,, + = - F,,, ~ ,s, ~ - F, , -~-k + emp, B~,) - 3~2A ~,]. [42l 

For the case of high intensity turbulence, which is likely to be independent of the coupling (as 
well as the viscosity), we neglect the coupling term in [42]. 

As a first step. we keep in [42] only those terms which we recognize to be described as 
self-diffusion of the turbulence in the equations for Ftu and F2~j. so that 

I f F  dF'is t~Fti* F dFu*'~ A:,,: \ ,,, 

and, in similar fashion, 

[431 
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In the weak turbulence case, we do not neglect the coupling terms in [42] and have to solve a 
more complicated algebraic system in the variable A ~.~, A~t, B~.~ and B~t, which is presented in 
Besnard & Harlow (1985). 

Expressions [43] are symmetric in i, j, /, as they should be (see Lumley 1978). 
In order to get closure for the correlations rn;j~/OX~(m'lkm~,/~L) and m~jd/dX~(m~rn'~/g2), we 

multiply the momentum equations for m~, and m~j by m~j and m~,, respectively, and then add the 
resulting equations and take the derivative of the sum with respect to Xk. We then multiply the 
result by mlk. We also multiply the equation for m~k by O/dX,,(m~,m~) and add the result to the 
previous equation and take the ensemble average of that sum. The momentum equations are used 
to eliminate all the derivatives except 3/Ot[m'2~ ?,/d,X,,(ml,m~j)]. We then make our usual assump- 
tions of steady-state, homogeneous turbulence, and neglect the coupling terms and quadrupole 
correlations. As before, we ignore the pressure correlations for the sake of simplicity. Using the 
fact that the correlation mi~(c~m~/~X~) is negligible within the limits of our approximation, we 
propose the closure 

\ (~ / /  \ OX~- --\g~// 
T• 

[44] 

with V = (/~,F~k~. +/~.,F2kk) 12. 
The expression for the correlation mljO/dXk(m~,m'~/(z) is obtained by exchanging indices 1 

and 2. 

3.4. Pressure velocity correlations P'ml, and P'm~, 
If we start from the equation for mtr and take its divergence with respect to x, neglecting the 

higher order term in 72, ;/Ot 2, then apply Green's theorem on the fluctuating pressure and multiply 
the result by m', and finally take an ensemble average, we obtain 

m'~'P'(X)=+Pl Imi'(X)4~ ~ [1 O (m,jm,k~q.ff~k\ (~ /-P,'~C (c~m2:-c2rnlj)l(x')dX'-7-' [45] 

where r = IIx - x ' l l ,  and the integration is performed over the whole space. However, because the 
fluctuating momenta are not correlated over distances exceeding the largest scale length of  the 
turbulence, we can restrict the integration to a finite volume centered in X, and of  radius s. 

For the lowest order part of the integral (in terms of c~), we propose: 

// 12 ~Fbl 
+ eXk / [46] 

using the assumption that the mean variables can be considered as slowly varying over the 
distance s. 

Thus, the conservative pressure correlation 

[ O " p' v (mljp')] 

can be decomposed into two parts, self-diffusion and diffusion due to the mean shear stress. 
As a summary, we give in appendix A the model equations for Ft 0, F2,j and T~j, which include 

all the previous closures. 

4. I N S T A B I L I T I E S  OF THE T W O - F I E L D  FLOW 

The goal of this section is to relate the instabilities of  a two-field flow to the developed turbulence. 
We analyze the problem of coherent instability of the fluid equations for a two-field flow in the 
absence of the viscous energy dissipation. 

When a steady-state solution exists, two possible interpretations can be given. One of these 
considers that the flow field consists entirely of a time-varying mean, for which there is conceivably 
a steady state. The steady state, however, is unstable in the absence of viscous energy dissipation. 
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The other interpretation considers the ensemble average of  the fluctuating flow to be the mean- 
flow part, with the rest described as turbulence. Any perturbation to the mean flow is trans- 
formed into fluctuational energy. We show, using this fact, that the turbulent stress tensor can 
stabilize both the linear and non-linear perturbations to the flow. Here F,s plays the same role 
as the collisional pressure in Needham & Nerkin (1983). With a linear analysis of the equations 
in the absence of identifiable turbulence, we derive the rate at which mean-flow energy is 
transformed into fluctuational energy. The next step is to identify the fluctuational part of the 
flow as turbulence and to use the energy transformation rate as a source to the turbulence 
energy. The third step is then to use the energy transformation rate as a source to the turbulence 
energy. 

At the end of  this section, we show that this source term to the turbulence energy can be exhibited 
directly from the Reynolds tensor transport equation through a careful examination of the different 
pressure correlations. 

To study the coherent instability of the non-turbulent two-field flow, we linearize [7]-[11], to 
which we have added the gravity terms. The zeroth-order solution is chosen to be the steady state 
for a fluidized dust bed, in which the pressure gradient balances the overall hydrostatic gravitational 
force. From the resulting dispersion relation we deduce the growth rate co* of  a perturbation of 
wavenumber k. In the weak coupling case, co* is proportional to the zeroth-order mean velocity 
difference, ]u°-u°] .  In the strong coupling case, co* is proportional to (u ° -  u°)Z/C. The 
fluctuational energy Er contained in any disturbance grows according to the equation 
dEr/dt = 2o9"Ef. 

Consider now equations for turbulent two-field flow. Equations [12]-[14] and [21]-[22] contain 
additional terms, when compared to [7]-[11] due to the presence of  turbulence. We include as a 
source in the turbulence energy equations this same amount of fluctuational energy, which, in turn, 
will be balanced by the decay terms. 

In this interpretation, the investigation of  stability again introduces perturbations into the mass 
and momentum equations for the mean flow. The turbulence energy equations, however, already 
represent the effect of  the fluctuational part of the dynamics, and, accordingly, are not perturbed 
in this analysis. 

It was found by Besnard & Harlow (1985) that, for given disturbance of wavenumber k, there 
exists a certain level of  turbulence above which this perturbation is stabilized. 

Define the quantities 

and 

q~ q2 

"~r 0 0 = P~2 + P2EI, 

0 0 B, 2k(~°p2u ° + E~pjul) 

( A1 '°.°+,,v,,8.,/j. c ,  = k c( °u ° +  o,o) + k '  p,v,, 

The level of  turbulence which stabilizes the disturbance is obtained through the condition 

H .0. 02 ̂  0 02 C, = ~:ul pj + ~ ~p:u2 + ~ ( A , C , -  B,B,), [47] 

since H depends on the turbulence intensities q~ and q2. 
The intensity of  turbulence which is retained must be a steady-state solution of the turbulence 

[A. I]-[A.3] (see the appendix) and balance exactly the loss of mean flow. For the sake of  simplicity, 
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we only retain a few terms in these equations. We have 

C ¢[..2 
2 - -  (qt2 - czq,) - ) . - - q ,  + 2o9"ql = 0, 

p j  s 

q}.2 
2 C (ql2 - gq2) - )" - -  q: + 2c°*q2 = 0, [48] 

P2 s 

C ~2 (qq2 - qu)  + C g (E2ql - ql2) = O. 
p l  p 2  

The terms with 2 are simplified versions of [41]. Consistency between [47] and [48] determines 
a smallest value for the parameter 2. It is shown in Besnard & Harlow (1985) that the system [48] 
always has a positive solution (q~, q2), as expected. 

This linear analysis supports the direct derivation of a source term proportional to the mean 
velocity difference between the two fields. In this case of  transition from instabilities towards 
turbulence, the developing turbulence is very small at the early stages of the process and our 
assumption of  negligible correlations in E ~ is no longer valid. Then we consider the term in [45] 
which is proportional to C(c~m2j -  E2mu). 

Equation [46], therefore, presents an additional term which we model as 

s 2 , &', _ _ 
m ~iP'c. = Ce3C ~ m ,, ~ (gm2j -/2fftu). [49] 

The correlation m ~; 8c [/c~Xj can be modeled as in Lumley (1978). For the sake of simplicity, we take 
a gradient-type approximation for it and [49] becomes 

m i;P'c = - Ce, Cs 'r , ,k  OX k OX, \ (2 c, / 

As a consequence, the conservative pressure correlation 

+ ~ (m liP') 0 ~  (m ;;P') OX, 

includes additional terms, among them source terms proportional to the mean velocity difference 
between the two fields, as expected. 

The full system of  tensors [A.I]-[A.3] in the appendix will be solvable analytically only for very 
simple circumstances, and even the use of numerical techniques will often prove difficult for 
complicated problems. From this set of equations, it is possible to derive a simplified model, like 
the "k -~ "  model for single-fluid turbulence developed by Launder et al. (1975). The complete 
derivation of such a model is not discussed in this paper, since it is beyond the scope of this work. 
However, even at this stage of complexity, it is possible to give an interpretation of the model for 
some limiting cases. 

5. L I M I T I N G  CASES 

The goals of this section are to interpret [A.I]-[A.3] (see the appendix) in terms of their 
consequences for several simple problems. These include the diffusion and wave-like transport of 
the volume fraction, the coupling decay of homogeneous turbulence and the decay of  turbulence 
in a gas as a result of inertial loading by imbedded particles. Simple analysis of  these problems 
can neglect the effects of  the triple correlation and the pressure correlations and the source and 
dissipation terms in [A.I]-[A.3]. 

Considering [A.I]-[A.3], together with the equation for the mean volume fractions, and mean 
momenta, and dropping the overbars for convenience, we have the following set of equations: 

-h- + = 0, [sz]  
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and 

c~e 2 Ore2, 
N + -g27 = o  , 

OFta C cl OP Om,, O ( m , i m , k ~ + _ _ = _ ( c , m 2 _ , 2 m , i ) _ _  - 
Ot +-~k\ c, / OZ, p, p, c3Xi' 

( ~ OF2i k C 62 OP Om2i O m2,m u + _ _  = _ _  ( 6 2 m j i  _ E t m 2 i )  _ _ _ _  

e-;- + \ 6---7: p2 p: ax,' 

[ 0 (mlk~ F 0 (m,i'~ ~ {m,,\-] & ' F' t 4 ~m " F' + e, F, o -S-~, \ 6 , / + '" o x, \ , , + F' " ~-~k L ~-[ ) J 

= 2C ~j (U o - 62Fi,:), 
Pt 

062F20 cgm.F2. I F  O ( m ~ )  0 (m2[]+Fza, 0 (m2[]] 
Ot 4 OX, ~-62 2,i~-~k ~ +Fz,,-~,\,2, I ~ \ q / _ j  

[521 

[531 

[541 

[55] 

[56] 

OTo+o, OT o O (m~,+~)+To O (m~,+mz~) # (m~,'] 

= C2 El O0_(m2s'] - Tv)+C--(e2F,  o -  T,,). [57] 
+ T ~ o x , \ ¢ 2  ] C~(c,F2,s P2 

5. !. The strong coupling limit 
To non-dimensionalize this system, we scale according to the following dimensionful quantities: 

time T, distance X, volume flux M (such that M T  = X), pressure P, density R, pressure R M  2 and 
coupling T/R. The system [51]-[57] is formally invariant, and, for convenience, we consider these 
equations for the strong coupling case C >> 1. This means that the coupling between the two fluids 
is the dominant process. In this limit we ordinarily expect the two mean-flow velocities to approach 
each other, m~i/E2*-.m2,/6j. Our purpose here, however, is to show that the presence of turbulence 
can alter this expectation, in particular to produce a balance between the gradient of turbulence 
energy and the persistence of a non-zero mean-flow interpenetration. This paradox is not only 
consistent with the equations, but it is also intuitively plausible when we recognize that microscopic 
tight coupling does not preclude the presence of turbulence, which can mix the fields in the presence 
of a volume fraction gradient. This circumstance accordingly represents the diffusion limit. We thus 
explore the possibility of the following expansion in the small parameter C-~: 

F~ o = C E C-"F]",]; c, = E C-"E] "); m,, = ~. C-"m',"~); 
n 

F,,j = C ~ C "F£"!. - --.,j, '2 = E C-"e~"); m2i = E c -"m(2"i); 
n 

T,: = C V C -"T! ")" U,s = C ~" C- "H (") l J  ~ - - t j  , ~ - -  - - t j  " 

To the lowest order in (C-~), [51]-[57] become 

p = Y~ c-"#("); 

&?l ~m~Ol 
o t -  + TX7 = o  , 

dc~ °) dm~ ) 
a--T +TZ-  = ° '  

[58] 

[59] 
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3~7(0) 1 
Z l ~ k  

gX~ p~ 
~ ~r'(O) 

* 2 ~ k  1 

ax~ 

and 

Equations [58] and [59] give 

(~/O,m ~o, __ ~ ~o, m ~o,), 

(~ tO)m ~o) _ ~ ~o) m tol), 
P2 

Ui, Ol . (o, ~ l o l  

U ( O )  _ ,. (o) ! ~ o )  
i j  - -  r"  l at 2ij 

T,O,= rjo,= .,o, 
~ t . /  • 

C 
~(o)'~ _ 0 ,  - -  ( m ~  °' + , , , u ,  - 

so that we obtain a momentum conservation equation 

m(O~ ± ,.,(o~ (curl Ik),, Ik ~ rgl 2k 

in which ~ is an arbitrary vector independent of time. 
Equations [60] and [61] become 

d co) d~{~ (p,F.,) = -m~°' + ,~°)(curl #), 

and 

By addition, we obtain 

so that 

C 
-- "~ 2, "[- OX, (p2F~) = _(o) E~°)(cu rl ~k),. 

- -  ( p , r , ~ ,  + p~O,~)  = o, 
axk 

[6o1 

[61] 

[62] 

[63] 

[641 

1 rOU(O) i t ( o )  ,%~o)\ 
--'~' " J  "~' } ~°'B, [661 m', ° ' =  - o ,  0x, + + '  ' 

where B, = (curl Ik), represents the mean translational velocity in any homogeneous region. 
With [62], [63] and [65], we can solve for U~ °~ and insert the result in [66]. This, in turn can be 

combined with [58] to give 

-~ = P,P2 ~ _ p , , ~ o )  + p~,~o, 0)(I] ~ ('~°'B*)" [67] 

This equation for E~ °) includes both convective and diffusive parts. In the special case where 
B = 0, this formulation shows the result that other authors have derived in a very different manner, 

so that 

p W(0~ _~ ~ ~0) @~k, [65] 
i ~ b k  n r  p2,1 2~ 

in which @~k is an arbitrary tensor independent of time with vanishing divergence. This equation 
describes the conservation of turbulence energy; it also represents a consistency condition between 
the initial turbulence energy levels of the two fields in the limit of strong microscopic coupling. 

Using [62] and [63] and the condition E~°I+ ~0)= 1, [60] becomes 

~Fj,, I ~tl  ~°~ U,j &~o~ 
~x, ,~o, ax, (~o))2 ~x,' 
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namely, that the diffusion of  the fluids can be driven by the turbulent kinetic energy (e.g. Lumley 
1975, 1978). 

This result also can be used to support the gradient approximations that are proposed for closure 
of  the turbulence equations. 

5.2. The weak coupling limit 
The above behavior only occurs if the dominant phenomenon is the coupling between 

the two fields, as may occur, for example, with very small and/or lightweight particles in 
a fluid. For other circumstances of multiphase flow, the coupling can be considered weak 
enough that C ,~ 1. Neglecting terms including C, we rewrite [51]-[58] for a one-dimensional 
geometry: 

c~ + t2  = 1, 

(~E I Om I 
+ = o ,  

~ -  + ? ~  =0 ,  

and 

Omj ~ I'm~'~ OF, ~l oP 
p, 

em2 OF2 q 

e~,F, dm,F, ~ ( m , )  
O ~  + ~ - x  + 3 ' ' F ' ~ - ~  Z = 0  

6~c2F2 6~m2F2 c3(m2) 
~,t + ~  + 3c2F2~ -q2 =0" 

Thus the coupling between the two fields is accomplished only through the pressure term and 
the condition ¢~ + ~z = 1. Studying the problem defined in figure I, it can be shown, in the limiting 
case ~/p~ ~ ~2/P2, that the velocity of the turbulent front is then mJq +__ (3F~/¢0 ~2. 

The characteristic parameters of the solution are 

~,m=~E,R+E,L), 
FIm=~(C)R+CIL) 3, 

m,m=3~(~,R--ClO, 

~1 =mlm +(3F'm~ Iz, 
(Im (Im 

~ 2 = m l m ( 3 F l m ~  12 
£1m ~lm 

~ R = m I m + ( 3 F I R ~  12, 
(Im ~IR J 

~lm ~IL 

[68] 

For initial conditions consisting of a step function in c~ centered at X = 0, with m being zero for 
all positive values of X, the subsequent behavior of  the fluid can be described as the propagation 
of a wave in each direction. The front of  each wave is of finite extension (¢R -- ~2)t and (~t - ~L)t. 
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( t  t tO  

~ R  

Figure 1. Initial condition for the volume fraction ~. in the weak coupling limit; ~ vs the space 
coordinate x. 

Within the two transit ion regions, the solution is described by the equations:  

E, --~(3EL) 1..(~ _ riO, 

m. ~(3~;0 L 2 ( ¢ - - / 3 L ) ( f l L + ~ ) ,  

[69] 

in which EL = FiLE 73 and flL = m~L/E,L + (3~)~'2E,L, in the left transit ion region; and 

F ,  = - ~(3CR)l""(~  - - / ~ R )  3, 

~, = ~ ( 3 ~ )  ' : ( ~  - -  G), 

= ~ 3 E ~ )  '"=(¢ - -  &)(G m l  

k 

[701 

in which ER = FIRE 13 and fir = mlR/~IR-  (3~)"2~,R, in the right transit ion region (figure 2). 
In the more  general case for which p~ is neither small nor  large compared  with 02, the solutions 

are more  complicated but nevertheless also exhibit this wave-like behavior  in the weak coupling 
limit under considerat ion.  

The results o f  this and the preceding section resemble similar results f rom the investigation of  
two interpenetrat ing gases initially separated by a membrane .  The r andom (Maxwel l -Bol tzmann)  
velocity fluctuations correspond to the turbulence in our  two-fluid model.  I f  the mean-f ree-path  
of  the molecules is large, then there is negligible coupling between the two interpenetrat ing gases, 
and each propagates  as though freely expanding into a vacuum,  with wave-like rarefact ions going 
in all directions f rom the initial point o f  contact .  I f  the mean-f ree-pa th  is short,  then there is s trong 

I I L 

(1 

~'IR 

( l m  

¢[IL 

/ 
i I 
I I 
I I 

¢ 

Figure 2. Self-similar solution for the volume fraction in the weak coupling limit; ~ vs the self-similar 
variable ~ = x/t. 
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coupling and the interpenetration becomes a diffusive process. In both extremes there is a net mean 
velocity in each of the gases, just as we obtain in our two-fluid turbulence model based on m and 
,. A model based on u and t would not show these two distinct interpenetration velocities, and 
would exhibit only the diffusion limit, as discussed in section 1. 

Available models usually use a diffusive-like evolution equation for E, and therefore would not 
show these two distinct interpenetration velocities, as discussed in section 1. 

5.3. Decay of  turbulence 

There are several important features of our turbulence model that can be exhibited by a 
consideration of the decay in homogeneous circumstances without source terms. In particular, we 
examine the late stages of decay, when the coupling effects are dominant, rather than the cascade 
decay of energy when the turbulence is more intense. We consider the system [55]-{57]. With 
homogeneity, the different components are decoupled. We obtain the simple system 

~,F.: 2C 
= - -  (U O -- t2Fio), [71] 

~t p~ 

~F2o =--2C ( U,s _ E,F2,) [72] 
~t P2 

and 

_ _  CE~ ~U9 = CE2 (ELF2, j - -  Uij ) + -  (E.2FIq- Uij ), [73] 
~t Pl P2 

where E~ and C2 are constants. 
With U,: = m~:n~j, Ft,j = m , m t / / t t  and F20= ~m2im2J/E 2 w e  can combine [71]-[73] to show that 

This shows that the contraction of the tensor (2U 0 - t~F2o - c2F,j) is />0, so that turbulent kinetic 
energy per unit volume, p~F,i + p2F2, monotonically decays in this circumstance. In addition, we 
can combine [71]-[73] to obtain 

-~(2Uo-E,F2, j -~2F,  o ) = - 2 C  + ~  (2U,j-E~F20-~2FIo) • 

This shows that the components of this tensor also decay monotonically, each in proportion to 
itself, suggesting a tendency for any arbitrary distribution of turbulence between the two fields to 
approach a specific apportionment in which 2Uo-c~F20-~2F~o=O. However, if an initially 
specified apportionment is such that Uo---E~F20 = c2F~ o, then the turbulence does not decay as a 
result of  coupling, and would then dissipate only as a result of the presently neglected viscosity. 

6. C O N C L U D I N G  REMARKS 

In this paper, we have developed the first stage of a two-field turbulence model, which rests on 
the rigorous derivation of the turbulence energy equations from the two-phase fluid equations and 
the provision of  a closure of these equations. This paper presented the Reynolds averaged set of 
transport equations for incompressible two-phase flow. The volume fraction of the dispersed phase 
must be small enough that the assumption of no interaction between the particles is valid. However, 
this restriction does not imply that the dispersed phase must be sparsely dispersed. Much remains 
to be accomplished. Of interest is the validity of the low-order approximations that we have 
described in this paper. 

We have derived in section 2 the decay term for our model by considering the cascade of energy 
from large-scale turbulence to small-scale turbulence. 

Section 3 presents the closures for all of the correlations involved in the momentum equations 
and in the turbulent field equations. In many cases the closure relies strongly on the inclusion of 
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decay, either the cascade decay or the coupling decay. These terms are especially important for 
triple correlations, for which these decay terms have not been rigorously derived. Also, the 
modeling of the pressure correlation terms are not yet fully understood. In any case, whatever 
models are proposed will have to be substantiated by comparisons with experiments. 

Section 5 discusses several interpretative features of our model. For example, in the case of strong 
coupling we obtain the model of other investigators for the diffusion of the volume fraction. In 
contrast to the previous models, we also show a weak-coupling, wave-like limit similar to that of 
diffusing dispersed gases, and we give a precise estimate for the velocity of such waves. We have 
also examined the properties of turbulence decay as a result of coupling between fluids. In each 
case, the analysis has utilized numerous approximations, which will require further investigation. 
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